题目链接:
题意:BOB和ALICE这对狗男女在一颗树上走,BOB先走,BOB要尽量使得总路径权和大,ALICE要小,可是有个条件,就是路径权值总和必须在[L,R]之间,求终于这条路径的权值。
思路:树形dp,dp[u]表示在u结点的权值,往下dfs的时候顺带记录下到根节点的权值总和,然后假设dp[v] + w + sum 在[l,r]内,就是能够的,状态转移方程为
dp[u] = max{dp[v] + w }(bob) dp[u] = min{dp[u] + w} (alice)。所以假设是bob初始化为0,alice初始化为INF。
可是 注意假设搜到叶子节点的时候,无论到谁dp[u]都出初始化为0,被这个坑了
还有就是HDU上这题用vector是过不了的,要用数组模拟的链表
代码:
#include#include #include using namespace std;#define max(a,b) ((a)>(b)?(a):(b))#define min(a,b) ((a)<(b)?(a):(b))#define INF 0x3f3f3f3fconst int N = 500005;int n, l, r, dp[N], E, first[N], next[N];struct Edge { int u, v, w;} edge[N];inline void scanf_(int &num)//无负数{ char in; while((in=getchar()) > '9' || in<'0') ; num=in-'0'; while(in=getchar(),in>='0'&&in<='9') num*=10,num+=in-'0';}void dfs(int u, int fa, int sum, int who) { if (who && first[u] != -1) dp[u] = INF; else dp[u] = 0; for (int i = first[u]; i != -1; i = next[i]) { int v = edge[i].v, w = edge[i].w; if (v == fa) continue; dfs(v, u, sum + w, 1 - who); if (who == 0 && dp[v] + w + sum >= l && dp[v] + w + sum <= r) dp[u] = max(dp[u], dp[v] + w); if (who == 1 && dp[v] + w + sum >= l && dp[v] + w + sum <= r) dp[u] = min(dp[u], dp[v] + w); }}void add(int u, int v, int w) { edge[E].u = u; edge[E].v = v; edge[E].w = w; next[E] = first[u]; first[u] = E++;}int main() { while (~scanf("%d%d%d", &n, &l, &r)) { E = 0; memset(first, -1, sizeof(first)); int u, v, w; for (int i = 0; i < n - 1; i++) { scanf_(u); scanf_(v); scanf_(w); add(u, v, w); } dfs(0, -1, 0, 0); if (dp[0] < l || dp[0] > r) printf("Oh, my god!\n"); else printf("%d\n", dp[0]); } return 0;}